Quantum invariant

From HandWiki
Short description: Concept in mathematical knot theory

In the mathematical field of knot theory, a quantum knot invariant or quantum invariant of a knot or link is a linear sum of colored Jones polynomial of surgery presentations of the knot complement.[1][2][3]

List of invariants

See also

References

  1. Reshetikhin, N.; Turaev, V. (1991). "Invariants of 3-manifolds via link polynomials and quantum groups". Invent. Math. 103 (1): 547. doi:10.1007/BF01239527. Bibcode1991InMat.103..547R. 
  2. Kontsevich, Maxim (1993). "Vassiliev's knot invariants". Adv. Soviet Math. 16: 137. 
  3. Watanabe, Tadayuki (2007). "Knotted trivalent graphs and construction of the LMO invariant from triangulations". Osaka J. Math. 44 (2): 351. http://projecteuclid.org/DPubS/Repository/1.0/Disseminate?view=body&id=pdf_1&handle=euclid.ojm/1183667985. Retrieved 4 December 2012. 
  4. Letzter, Gail (2004). "Invariant differential operators for quantum symmetric spaces, II". arXiv:math/0406194.
  5. Sawon, Justin (2000). "Topological quantum field theory and hyperkähler geometry". arXiv:math/0009222.
  6. "Data". hal.archives-ouvertes.fr. 1999. http://hal.archives-ouvertes.fr/docs/00/09/02/99/PDF/equality_arxiv_1.pdf. 
  7. "Archived copy". http://knot.kaist.ac.kr/7thkgtf/Lawton1.pdf. 
  8. Invariants of 3-manifolds via link polynomials and quantum groups - Springer. doi:10.1007/BF01239527. 

Further reading

External links